
SASA: A Synthesis Scheduling Algorithm with Prediction and Sorting

Features

P.G.Sarigiannidis, G.I.Papadimitriou, Senior Member, IEEE, and A.S.Pomportsis

Department of Informatics, Aristotle University, Box 888, 54124 Thessaloniki, Greece
sarpan@csd.auth.gr

Abstract

We present a new scheduling algorithm, which is a
synthesis of all the remarkable features of
pretransmission coordination-based protocols for
broadcast and select star networks. The new algorithm
follows a novel policy for switching, in order to
improve the efficiency of the network. It is based on all
notable elements of a specific family of protocols and
tries to accommodate the different ways of scheduling.
The protocol manages to bring some improvement, in
terms of channel utilization and network throughput,
which is proven by simulation results.

1. Introduction

Seeing the ever-growing need for more bandwidth a

lot of scientific research focuses to the improvement of

utilization in the way of the access of the transmission

media. If we ask about the kind of the transmission

media, the response is easy, if we consider that the

optical networking is able to satisfy the user’s growing

demands for bandwidth and also supports protocol

transparency, more reliability than the traditional

copper networks and in some cases easy and simple

protocol functionality [1, 2]. In order to utilize in the

best way the optical technology we need an

appropriate multiplexing technique. Wavelength

division multiplexing (WDM) seems to control the

area of the multiplexing, since WDM offers an

excellent way of exploiting the huge bandwidth of

optical fibers, by introducing concurrency among

multiple users transmitting at feasible rates [3, 4]. Such

a network consists of one optical N×N passive star

coupler and N nodes. Each node is connected via two

way fibers to the optical star coupler and it can

transmit with the aim of W channels. This paper

focuses on the Broadcast-and-Select Star local area

networks with one tunable transmitter and one fixed

receiver (TT-FR) per node (Fig. 1).

So, each node can transmit in every channel in the

network. Also, each channel has one dedicated

channel, in order to accept data, named home channel

[5].

It is very important for a network to adopt a

common policy for the coordination between the nodes

and the channels for some issues: a) which node will

transmit, b) on which channel will transmit, and c)

during which time the transmission will be executed.

These responsibilities are dedicated to media access

protocol (MAC). The subject of how nodes should

access the various channels is a crucial issue for the

efficient the network, since a MAC protocol usually

aims to prevent collisions from occurring [6]. If we

want to classify the MAC protocols for optical

networks we can say that there are generally

categorized as either pre-transmission co-ordination

based or pre-allocation based. In pre-allocation MAC

protocols channel allocations to transmitting nodes are

fixed and scheduled in advance. So, the available

wavelengths are used only as data channels and no

wavelength serves as a shared control channel for

coordination. Conversely, pre-transmission

Node 0

Node 1

Node N-1

Passive Star

Receiver

W Transmitters Array

Receiver

W Transmitters Array

Receiver

W Transmitters Array

.

.

.

Figure 1. Broadcast and Select star network with

tunable transmitter and fixed receiver per node.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

coordination based protocols perform schedule

computation at the beginning of each time slot. These

schemes differ from pre-allocation ones in that they

designate at least one wavelength to be used as a

control channel. The coordination process entails the

following steps: the algorithm accepts initially the

requirements of all nodes and organizes them in a

transmission frame, called demand (or traffic) matrix,

D = [di,j]. The matrix has N rows, as N is the number

of the nodes and W columns, as W is the number of

the channels. Hence, the cell in the i (Ni) row, j

(j. W) column contains the amount of time (usually

in timeslots), which i node requests to transmit on the j

channel. Time is divided in timeslots. Usually,

transmission is organized as frames where each frame

is composed of a reservation phase followed by a data

phase. The frame then stores for every node the

number of timeslots required for transmission to a

specific channel. Then the nodes transmit the requested

data during the current frame at different moments.

Lastly, a scheduling algorithm is referred to as offline,

when it needs the entire demand matrix, i.e., the whole

requests of all nodes to begin the construction of the

schedule, while an online scheduling algorithm begins

schedule computation just after reading the requests of

the first node. In this work we study the performances

of online algorithms.

2. Previous work

Online interval scheduling (OIS) [7] is a very

simple online scheduling algorithm. It shares the

advantage of online algorithms in that it does not

require that the entire demand matrix becomes

available before it begins schedule computation.

Instead, OIS begins constructing the transmission

schedule as soon as the requests of the first node are

available. OIS functions as follows: assume that node

n1 requests t1 timeslots for transmission in channel w1

and that OIS determines that there is a time period in

the next frame during which the requested channel is

available i.e. there exists a value t such that the channel

is available from timeslot t to timeslot t + (t1 - 1). As

we mentioned the protocol must ensure the absence of

collisions. In this context, OIS examines the possibility

of contentions, i.e., the possibility of the concurrent

transmission of two or more nodes on the same

channel. If the algorithm concludes that the scheduled

transmission does not result in any collisions, it

includes it in the scheduling matrix that is being

constructed. As a result, at any given timeslot the

request table (scheduling matrix) of OIS comprises of

the nodes that are scheduled to transmit and the

wavelengths they will transmit in.

The basic problem with OIS is the large amount of

time, of the schedule computation period of each

frame. In order to decrease the delay that a ready node

experiences while waiting for OIS to compute the

schedule, predictive online scheduling algorithm

(POSA) [8] attempts to eliminate the duration of the

schedule computation process by predicting the nodes’

requests for the next frame. In this direction POSA

makes use of a hidden Markov chain and attempts to

predict the requests of the nodes for the subsequent

frame based on their requests for the previous frame.

Because the algorithm does not wait for the nodes to

send their requests in order to compute the schedule

but starts working based on the predictions, a

significant amount of time is saved. The predictor uses

two different algorithms, the learning algorithm and

the prediction algorithm. During each frame of data,

the predictor first runs the learning algorithm and then

the prediction algorithm. The first algorithm is

responsible for informing and updating the data of the

history queue, while the second one is responsible for

predicting the demand matrix as accurately as possible.

More details about the predictor can be found in [8].

Check and sort-predictive online scheduling

algorithm (CS-POSA) [9] is an extension of POSA. Its

aim is to extend POSA, while maintaining the

pipelining of the schedule computation and the full

operation of the predictor. The extension of CS-POSA

is based on shifting of the schedule computation of the

nodes or in other words, on guiding the order of

checking and programming of the nodes. It examines

the cumulative workload, i.e., the sum of the requests

of each node to all destinations and based on it, it

processes them in a declining order. Shifting is based

on the workload of each node, which means that the

CS-POSA comprehends better not only the general

traffic of the network but also the specific workload in

each node. Before CS-POSA constructs the schedule

matrix, it takes the two following steps. In the first step

CS-POSA adds each row of the traffic matrix D in a

new vector S that will register the total amount of

requests by each node. So, vector S consists of the total

amount of the requests of the whole nodes for the

whole transmission channels. In the second step CS-

POSA grades vector S in a declining order. In case

those two nodes are found with the same total number

of requests, then the selection is random.

Wait for fullness (WFF) [10], is a protocol that is

based on the two previous algorithms that were

discussed namely OIS [7] and POSA [8]. WFF

introduces a new schedule computation mechanism

called the cleanup mechanism. It is actually a

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

procedure during which the timeslots that contain at

least one idle channel are located and logically erased

so that the total number of idle timeslots is minimized

and the channel utilization is increased. When we refer

to an idle timeslot we mean that during this timeslot no

transmission is carried away. In other words during

this timeslot channels remain idle. After constructing

the scheduling matrix according to OIS, the lines of the

matrix (corresponding to channels) are scanned one by

one for all columns (i.e. for all timeslots). When a slot

containing at least one idle channel is located it is

logically erased which means that the transmissions it

contains will be performed in one of the following

frames. This means that the requests that were

rescheduled will be added to the new requests that the

nodes will send for the following frame and the actual

data will continue to be stored in queues while their

transmission is being scheduled.

The cleaning mechanism includes a process called

refresh function during which the contents of the

waiting queues are emptied. This action leads to a

forced scheduling of all waiting packets, in the manner

of OIS. This refresh function is performed at regular

frame intervals.

3. The new synthesis protocol

The new proposed protocol is a synthesis of all

previous scheduling algorithms. Synthesis

accommodation scheduling algorithm (SASA)

maintains all the positive and remarkable aspects of the

OIS, POSA, CS-POSA, and WFF algorithms, with a

co-operative way. Its goal is to maximize the

efficiency of the network, in terms of channel

utilization and network throughput. At the same time,

tries to exploit all the advantages of the

aforementioned algorithms, in order to combine a high

network throughput with a low packet delay. The

performance of the new protocol is examined via

simulation tests. Also, we study the performance of the

specified network supported by all the previous

scheduling algorithms.

The basic idea of SASA is to combine the four

specific elements of all the previous algorithms, with

the best way. In other words we develop a dynamic

scheme, which adopts 4 features from OIS, POSA, CS-

POSA, and WFF. Let us see the source algorithm of

each different element:

a) Simple online scheduling algorithm. SASA

borrows from OIS the simplicity of its algorithm and

the absence of any complex procedure or manufacture,

keeping the complexity in low levels. Also, SASA

adopts OIS’s online feature and that means that SASA

starts to build the schedule matrix, when the first set of

requests is known.

b) Prediction mechanism. POSA is a very powerful

scheme, which is based on predicting the traffic or

demand matrix that is input to OIS. If we suppose that

the network is comprised of N Nodes and W channels

then the overall predictor is the output of a NXW

matrix. Each cell of this matrix represents the expected

next number of requested slots for the next frame for

each node in each channel. This is the first feature,

which SASA adopts from POSA. Apart from this,

POSA operates in three phases: the learning phase, the

switching phase and the prediction phase. In the first

phase POSA operates in simple way, like OIS, without

any predictions and supports with history information

the queues of the predictors. During the second phase

we suppose that the predictor is ready to predict, since

it has learned the state of the network. Lastly, during

the last phase POSA starts the prediction, hence the

demand matrix is informed by the predictor and

computes the schedule matrix with the predictor’s

input. The set of the three phases is adopted by SASA.

c) Shifting of channel servicing. The extension of

CS-POSA is based on shifting of the schedule

computation of the nodes. SASA adopts the shifting

feature from CS-POSA with an additional

characteristic. In case two or more nodes are found

with the same total number of requests, then the

algorithm chooses the node with the highest value, i.e.,

the node with the maximum value in its row. So,

SASA gets from the predictor the constructed

scheduling matrix for the following data frame and

simultaneously shifts the order of control and service

of the nodes, starting from the one with the additively

most requests and finishing with the one with the least.

d) Cleanup and refresh mechanism. WFF introduces

a new schedule computation mechanism called the

cleanup mechanism, combined with a reset process,

named refresh function. The function of the cleaning

mechanism can be divided into the following four

steps:

Locate the timeslots that contain at least one idle

channel (referred to as idle timeslots).

Logically erase these timeslots and construct the

scheduling matrix without these timeslots.

Reschedule the requests that were contained in the

deleted timeslots.

At regular predetermined intervals perform the

refresh function and schedule all stored (in queues)

packets so as to put an upper bound on the incurred

service delay. For the frame that the refresh function is

performed, WFF functions as OIS or POSA, and the

specific frame is named as refresh frame. This pair of

processes is adopted by SASA.

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

4. SASA

SASA acts in three phases: the learning phase, the

switching phase and the prediction phase. During the

first phase SASA processes like OIS. In the second

one SASA changes and starts to construct the schedule

matrix with the predictor’s inputs. During the last

phase SASA predicts the requests of each node for

next frame and uses them to fill the demand matrix of

the next frame. After constructing the scheduling

matrix SASA examines the cumulative workload, i.e.,

the sum of the requests of each node to all destinations

and based on it, it processes them in a declining order.

At the end SASA functions the cleanup mechanism on

the scheduling matrix. Firstly, SASA finds the idle

timeslots, secondly SASA isolates the idle timeslots

and reconstructs the new schedule algorithm, and

thirdly reschedules the isolated requests for the next

frame. As we mentioned before SASA performs at

regular frame intervals the refresh function, in order to

clean the queues of each node. In order to understand

better the whole process of SASA, a specific example

is examined. Let us suppose that the following demand

matrix Df has been constructed by nine individual

predictors, for the frame f, for a network with three

nodes (n0, n1, n2) and three channels (w0, w1, w2).

It is clear that the predictor p0,0 predicted one

timeslot for node n0 with channel w0, the predictor p0,1

predicted two timeslots for node n0 with channel w1,

and so on. The first job of SASA is to add each row of

the traffic matrix Df in a new vector Sf that will register

the total amount of requests by each node. So, Sf=

[1+2+1, 3+2+1, 2+1+2] = [4, 6, 5].

2..1..2

1..2..3

1..2..1

fD

The second job of SASA is to grade vector Sf in a

declining order. If two or more rows have the same

value then the algorithm examines the maximum value

of each row. In this way, vector Sf changes in the

ordered vector S’f = [6, 5, 4]. The new ordered vector

S’f denotes that the service order of the nodes. First of

all requests of n1 will be served, then the requests of n2

and lastly the requests of n0. The third job of SASA is

to construct the schedule matrix, with the same manner

like OIS and POSA (the left part of Fig. 3). At this

point SASA functions the cleanup mechanism. The

timeslots that include at least one idle channel are

identified. These timeslots are 3, 4, and 5. Hence, idle

timeslots are located and are isolated and a new

schedule matrix is reconstructed (right part of Fig. 3.).

It must be pointed out that the requests included in the

isolated timeslots are not overlooked. SASA

reschedules these requests in the frame that follows

(together with the nodes’ actual requests for the next

frame). Therefore one timeslots for node n0 and two

timeslots for node n2 in channel w0, two timeslots for

node n1 in channel w1, and one timeslot for node n1 in

channel w2 will be rescheduled. The new demand

matrix that contains the cumulative nodes’ requests for

frame f+1, denoted as D`f. Let us suppose that the

following demand matrix Df+1 has been constructed by

nine individual predictors, for the frame f+1:

0..0..2

1..2..0

0..0..1

' fD .

1..2..2

1..0..3

2..2..1

1fD .

timeslots

0 1 2 3 4 5

n2

n2

n2

n2

n1

n1n0

n0 n0

n1 n1 n1

w2

wo

w1

n2

n1

n0

id
le

id
le

id
le

timeslots

0 1 2

n2

n2

n2n0

n0 n0

n1 n1 n1

w2

wo

w1

Figure 2. The function of clean up (frame f).

timeslots
0 1 2 3 4 5

n2

n1

n1

n0

n0

n0

n1 n0

n2 n2 n2

w2

wo

w1

n1

n2

n1

6

n1

n2

n1

n2

7

n0

8

n0

Figure 3. The schedule matrix of SASA

after the sorting (frame f+1).

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

According to the cleanup mechanism the demand

matrix for frame f+1 would be the result of the

addition of tables D`f+Df+1. Therefore the new demand

matrix for frame f+1 would be equal to:

D`f+Df+1 =

0..0..2

1..2..0

0..0..1

1..2..2

1..0..3

2..2..1

1..2..4

2..2..3

2..2..2

.

Again SASA adds each row of the demand matrix in a

new vector Sf+1 that will register the total amount of

requests by each node. Sf+1 = [2+2+2, 3+2+2, 4+2+1] =

[6, 7, 7]. Now SASA grades vector Sf+1 in a declining

order. The value of the sum of n1 and n2 is the same,

but the row of n2 has maximum value equal to four,

when the row of n1 has maximum value equal to three.

In this context the algorithm chooses to serve n2. In

this way, vector Sf changes in the ordered vector S’f =

[7, 7, 6]. First of all requests of n2 will be served (sum

is equal to seven and the maximum rate is equal to

four), then the requests of n1 (sum is equal to seven

and the maximum rate is equal to three) and lastly the

requests of n0 (sum is equal to six). So, SASA will

construct the following scheduling matrix (Fig. 4.). At

this point SASA functions the cleanup mechanism.

The timeslots that include at least one idle channel are

identified. These timeslots are 4, 5, 6, 7, and 8. Hence,

idle timeslots are located and are isolated and a new

schedule matrix is reconstructed (Fig 5.). SASA

reschedules the isolated requests in the frame that

follows. Therefore two timeslots for node n0 and three

timeslots for node n1 in channel w0, two timeslots for

node n2 in channel w1, and one timeslot for node n2 in

channel w2 will be rescheduled. The new demand

matrix that contains the cumulative nodes’ requests for

frame f+2, denoted as D`f+1 is shown below. Let us

examine one last frame with the following demand

matrix Df+2:

1..2..0

0..0..3

0..0..2

' 1fD .

2..1..2

2..2..0

1..1..1

2fD .

The whole demand matrix for frame f+2 would be

the result of the addition of tables D`f+1+Df+2.

Therefore the new demand matrix for frame f+2 would

be equal to:

D`f+1+Df+2

1..2..0

0..0..3

0..0..2

2..1..2

2..2..0

1..1..1

=

3..3..2

2..2..3

1..1..3

Again SASA adds each row of the demand matrix

in a new vector Sf+2 that will register the total amount

of requests by each node: Sf+2 = [3+1+1, 3+2+2,

2+3+3] = [5, 7, 8]. Now SASA grades vector Sf+2 in a

declining order. In this way, vector Sf+2 changes in the

ordered vector S’f+2 = [8, 7, 5]. First of all requests of

n2 will be served, then the requests of n1 and lastly the

requests of n0. If we assume that refresh function is

performed during frame f+2 then the final schedule

matrix for frame f+2 will be like that in Figure. 6.

5. Simulations results

In this section, we present the results of a set of

performance comparison experiments between the four

scheduling algorithms: POSA, CS-POSA, WFF, and

SASA. The behavior of the four algorithms is

presented under uniform traffic. In the results of the

simulation, it is assumed that N is the number of

nodes; W is the number of the channels and K is the

maximum value over all entries in the demand matrix.

Also, it should be mentioned that the tuning latency

time is considered to be equal to zero timeslots for

simplicity reasons. The values range between 0 and K

and in order the goal of scalability to be achieved, the

value of K is not constant in the following experiments

timeslots
0 1 2 3 4 5

n1

n1 n2

n0

n1 n2

n2 n2 n1

w2

wo

w1

n1

n2

n0

6

n2

n0

n2

7

n0

8

n0

n2 n1

9

n1

Figure 5. The schedule matrix of SASA after the

function of refresh mechanism (frame f+2).

timeslots
0 1 2 3 4 5

n2

n1

n1

n0

n0

n0

n1 n0

n2 n2 n2

w2

wo

w1

n1

n2

n1

6

n1

n2

n1

n2

7

n0

8

n0

timeslots
0 1 2 3

n2

n1

n1

n0

n0

n0

n1 n0

n2 n2 n2

n1

id
le

id
le

id
le

id
le

id
le

id
le

id
le w2

wo

w1

Figure 4. The function of clean up (frame f+1).

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

but each time it is equal to: Floor(NW/5).
Channel Utilization

65%

70%

75%

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 80 90 100

Nodes

C
h

a
n

n
el

 U
ti

li
za

ti
o

n
 (

%
)

POSA (W=4) POSA (W=6) CS-POSA (W=4) CS-POSA (W=6) WFF (W=4)

WFF (W=6) SASA (W=4) SASA (W=6)

 Figure 6. Channel utilization
Network Throughput

6

7

8

9

10

11

12

13

14

15

10 20 30 40 50 60 70 80 90 100

Nodes

N
et

w
o

rk
 T

h
ro

u
g

h
p

u
t

(G
b

p
s)

POSA (W=4) POSA (W=6) CS-POSA (W=4) CS-POSA (W=6) WFF (W=4)

WFF (W=6) SASA (W=4) SASA (W=6)

 Figure 7. Network throughput

Network Throughput vs. Mean Packet Delay

0

500

1000

1500

2000

2500

3000

7 8 9 10 11 12 13 14 15

Network Throughput

M
ea

n
 P

ac
k

et
 D

el
a
y

POSA (W=4) POSA (W=6) CS-POSA (W=4) CS-POSA (W=6) WFF (W=4)

WFF (W=6) SASA (W=4) SASA (W=6)

 Figure 8. Throughput vs. delay

The line speed has been set in 2.4 Gbps. The metric,

called refresh rate, means how often refresh function is

executed and is equal to 5 for WFF and SASA. The

results from the comparison between the four

algorithms, in terms of channel utilization are shown in

Figure 6 for four and six channels. It is clear that

SASA is obviously improved from all the others, with

a maximum difference with WFF of 10% in ten nodes

and six channels and 16% with POSA. Figure 7 shows

the comparison of the algorithms in terms of network

throughput. It is obvious that SASA improves the

throughput of the network with a maximum difference

of 1400 Mbps with WFF and 3700 Mbps when nodes

are equal to 10 and channels are 6. Lastly, Figure 8

shows the relation throughput-delay. It can be

observed that for each value of K, SASA improves the

network throughput, while keeps lower mean packet

delay from WFF.

6. Conclusions

In this paper, we have proposed a new synthesis

algorithm for scheduling data in a WDM broadcast and

select star network. The proposed algorithm maintains

the considerable elements of the pre-transmission

coordination based protocols. It has shown that the

proposed algorithm can improve the performance of

the network, regardless of the amount of the nodes or

the amount of the channels in the network.

7. References

[1] P. Green, “Progress in optical networking, IEEE

Communications magazine”, vol. 39, no. 1, 2001, pp. 54-61.

[2] G. I. Papadimitriou, Ch. Papazoglou, and A. S.

Pompotrsis, “Optical Switching : Switch Fabrics,

Techniques, and Architectures”, IEEE/OSA Journal of

Lightwave Technology, vol. 21, no. 2, 2003, pp. 384-405.

[3] G. I. Papadimitriou, P. A. Tsimoulas, M. S. Obaidat, and

A. S. Pomportsis, Multiwavelength Optical LANs, Wiley,

2003.

[4] S. Chatterjee and S. Pawlowski, “All-optical networks,”

Commun. ACM,vol. 42, no. 6, pp. 74–83, June 1999.

[5] G. I. Papadimitriou and A. S. Pomportsis, “Self-Adaptive

TDMA protocols for WDM star networks: A learning-

automata-based approach,” IEEE Photon. Technol. Lett., vol.

11, pp. 1322–1324, Oct. 1999.

[6] C.A. Brackett, “Dense wavelength division multiplexing

network: Principles and applications”, IEEE J. Selected

Areas Commun., vol. 8, 1990, pp. 948-964.

[7] K. M. Sivalingam, J. Wang, J. Wu and M. Mishra, “An

interval-based scheduling algorithm for optical WDM star

networks”, Photonic Network Communications, vol. 4, no. 1,

2002, pp. 73-87.

[8] E. Johnson, M. Mishra, and K. M. Sivalingam,

“Scheduling in optical WDM networks using hidden Markov

chain based traffic prediction, Photonic Network

Communications”, vol. 3, no. 3, 2001, pp. 271-286.

[9] P. G. Sarigiannidis, G. I. Papadimitriou, and A. S.

Pomportsis, “A New Prediciton and Channel Sorting Based

Scheduling Algorithm for WDM Star Networks”, 12th

Annual Symposium of the IEEE/CVT, Nov. 3, 2005,

Enschede, the Netherlands

[10] P. G. Sarigiannidis, G. I. Papadimitriou, and A. S.

Pomportsis, “WFF: A High Performance Scheduling

Algorithm for WDM Star Networks that Minimizes Idle

Timeslots”, 12th Annual Symposium of the IEEE/CVT, Nov.

3, 2005, Enschede, the Netherlands

Proceedings of the 11th IEEE Symposium on Computers and Communications (ISCC'06)
0-7695-2588-1/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

